

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

CLASS: VIII

SUB.: MATHS

DATE: 04-05-2021

Exponents and Powers

Exponent: If p is a rational number and have a non-zero value, m is a natural number, then, $p \times p \times p \times p \times \times p(m \text{ times})$ is written as p^m , where p is the base number and m is the exponent value and p^m is the power and ' $p^{m'}$ ' is said as 'p – raised to the power m'. This is the general representation of exponents and powers.

Example: $9 \times 9 \times 9 \times 9 \times 9 \times 9 = 9^7$, where 9 is the base number and 7 is the exponent.

The numbers with negative exponents also obey the following laws:

Rules for Integral Exponents1. $a^{-n} = \frac{1}{n}$ Defination of negative exponant2. $\frac{1}{a} = a^{-1}$ and $\frac{1}{a^{-n}} = a^n$ Negative exponent rule3. $a^0 = 1$ Definition of Zero exponent4. $a^m \times a^n = a^{m+n}$ Product Rule5. $a^m \div a^n = a^{m-n}$ Quotient Rule6. $(a^m)^n = a^{mn}$ Power of power Rule7. $(a \times b)^m = a^m x b^m$ Power of Product Rule8. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$ Power of Quotient Rule

- (a) $x^m \times x^n = x^{m+n}$
- (b) $x^m \div x^n = x^{m-n}$
- (c) $x^m \times b^m = (xb)^m$
- (d) $x^0 = 1$
- (e) $\frac{x^m}{y^m} = \left(\frac{x}{y}\right)^m$
 - $(i) a^m \times a^n = a^{m+n}$
 - $(iii)\,(a^m)^n=a^{mn}$
 - $(v) \frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$
 - $(vii)\left(\frac{a^{-m}}{b^{-n}}\right) = \frac{b^n}{a^m}$

(f)
$$\left(\frac{x}{y}\right)^n = \left(\frac{y}{x}\right)^{-n}$$

g)
$$\frac{1}{x} = x^{-1}$$

(h)
$$x^p \times x^q \times x^r \times x^s = x^{p+q+r+s}$$

(i)
$$[(x^m)^n = x^{mn}]$$

(*ii*)
$$\frac{a^m}{a^n} = a^{m-n}$$

$$(iv) \ a^m \times b^m = (ab)^m$$

(vi)
$$a^0 = 1$$

(viii) $\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^m$

Laws of Exponents

If a, b are non-zero integers and m, n are any integers, then

Remember

- $a^n = 1 \Rightarrow n = 0$
- $1^n = 1$ where n is any integer.
- $(-1)^n = 1$ where n is any even integer.
- $(-1)^n = -1$ where n is any odd integer.

• Powers With Negative Exponents

If a is any non-zero integer and m is a positive integer, then

a^{-m}=1/a^m

Note: a^{-m} is called the multiplicative inverse of am as $a^{-m} \times a^m = 1$.

It is obvious that am and a-m are multiplicative inverses of each other.